Introduction
Life Sciences might be seen as the connections between medicine, biology, mathematics, physics, and computer sciences. Further, optimal control might be defined as the extension of static optimization, or even as some comments, the new face of Variational Calculus.
In this talk we present several examples from life sciences analyzed with the support of optimal control. We might apply basically three approaches to optimal control problems, with their own weaknesses and strengthens: the Pontryagin’s Maximum Principle, Dynamic Programming, or Static Optimization. All the problems treated here were analyzed by the Pontryagin’s Maximum Principle.
The problems are solved using numerical schemes implemented in a computer. Topping the bill, we present two cases from a paper on process of publication: phototherapy for infants affected by neonatal jaundice and Feed-Forward Loop Network. We leave as future works comparisons with other approaches such as dynamic programming, or works on constraints on state space. Furthermore, we have concentrated on continuous-deterministic problems.
Keywords: Life Sciences, applied optimal control, numerical schemes, Runge-Kutta Method, forward-backward sweep method.
No comments:
Post a Comment